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Analysis of self-written waveguides in photopolymers and photosensitive materials
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We develop a series expansion technique for analyzing the waveguides which can be self-written in photo-
sensitive materials and photopolymers. Series expansions of the electric field amplitude and the refractive
index distribution in the propagation distance are used to describe the primary eye, a feature that indicates that
a waveguide is being formed in the material. We apply this technique to arbitrary incident beams and geom-
etries, and we also take the material loss and saturation of the refractive index into account.
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I. INTRODUCTION

Previous theoretical work@1,2# indicates that a channe
waveguide can be self-written in a planar slab of photos
sitive glass by a Gaussian beam at a wavelength at which
material is photosensitive. This occurs for both one- a
two-photon photosensitivity models@2#. We have found that
self-written waveguides also form in bulk photosensitive m
terials, where no waveguide is present initially.

Consider a Gaussian beam incident on a photosens
material. Initially, the beam diffracts~as in Fig. 1 for a bulk
material!. The photosensitivity of the material causes the
fractive index to increase, and it increases most where
intensity is highest. Hence the refractive index change
greatest on the axis of propagation of the beam, and so
beam is guided more strongly along this axis. We ha
shown that over time this effect leads to the formation o
channel waveguide in the glass. The structure of the resu
waveguide depends on the choice of input beam profile. D
ferent choices of the incident beam shape allow the pro
ties of the resulting waveguide to be tailored to suit the
sired application.

Although self-writing in a photosensitive glass has yet
be demonstrated experimentally, other self-writing proces
have been observed. For example, photopolymerization
been used to create permanent, self-written solid structure
bulk liquid photopolymers@3,4#. The features of this proces
are similar to the self-writing process described above. T
principal difference between photosensitivity and photopo
merization is that in a photopolymer, the index response
delayed by 0.01–1 s relative to the illumination@3,4#. Ta-
pered waveguides have also been written in UV-cured ep
using a similar, dynamic self-writing process@5#. All these
self-writing processes are qualitatively similar.

Here we present an analytical technique developed
study some of the principal features of this class of s
writing processes. We apply this technique to both photos
sitivity and photopolymerization, and it can be used to stu
either the planar or bulk geometry.

We use two partial differential equations to describe s
writing; one to describe light propagation, and another
describe how the refractive index changes in respons
light. This model is described in detail in Sec. II. No exa
571063-651X/98/57~1!/1104~10!/$15.00
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solutions to this problem are known. The most straightf
ward approach is to solve these equations numerically,
we have done this for both photosensitivity and photopo
merization using a beam propagation method combined w
updates of the refractive index@1,2#. Although this technique
provides a detailed and accurate description of the proces
requires intensive use of both computer time and memo
We have also developed a modal decomposition techn
@6# for the photosensitivity process where we decompose
electric field and the refractive index into Hermite-Gauss
modes. Although this technique is more efficient than the
simulation, it also only yields purely numerical results. He
we describe an analytical series expansion technique tha
lows us to describe some important features of self-writ
waveguides exactly. In particular, we describe the format
and evolution of maxima in the intensity and index~which
we refer to as eyes!, which are precursors to waveguide fo
mation.

In previous work, we applied the series expansion te
nique to a Gaussian beam incident on a planar photosens
material@1,2#. Here we generalize the technique to both p
nar and bulk geometries, and to an arbitrary input beam.

FIG. 1. Schematic of a bulk photosensitive material, show
the initial diffraction of the Gaussian beam.
1104 © 1998 The American Physical Society
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57 1105ANALYSIS OF SELF-WRITTEN WAVEGUIDES IN . . .
also take the saturation of the refractive index change and
material loss into account. This allows us to obtain a grea
physical insight into the types of waveguides that can
self-written in real photosensitive materials and photopo
mers.

Sections II and III describe the model we use to study t
self-writing process. In Sec. IV we discuss the maxima t
form in the intensity and refractive index~primary eyes!,
which are precursors to the formation of a waveguide in
material. Section V outlines the way in which series exp
sions for the intensity and refractive index distributions
the material are calculated, and how they can be use
calculate the trajectories of the primary eyes, and hence
culate the shape of the resulting waveguide. Section VI gi
the series expansion results found when the saturation o
refractive index or loss are included in the model. The res
of the series technique for photopolymerization are also p
sented in this section.

II. MODEL

The paraxial wave equation is used to describe li
propagation@7,8#:

ik0n0

]E
]z

1
1

2
¹ t

2E1k0
2n0DnE1

i

2
k0n0aE50, ~1!

where k0 is the free space wave number,n0 is the initial
refractive index,Dn(x,y,z,t)5n2n0, wheren is the current
refractive index andE(x,y,z,t) is the electric field envelope
amplitude. We explicitly include a constant loss term in E
~1!, wherea is the attenuation coefficient. The loss in de
bels per unit length is 4.343a. For a planar material
¹ t

25]2/]y2, and we assume that the field profile is una
fected in the x direction @1,2,8#. For a bulk material,
¹ t

25]2/]x21]2/]y2. We have approximated the refractiv
index term in the paraxial wave equation by a linear fact
because the refractive index changes we consider are s
~typically less than 1%)@7#.

We use the following simple phenomenological mod
which includes saturation effects, to describe the evolution
the refractive index for both photosensitivity and photopo
merization@2–4,9,10#:

]Dn

]t
5A~EE* !pS 12

Dn

Dns
D , ~2!

wheret is the time andDns is the fixed saturation value o
the refractive index change. For a photosensitive materiaE
is calculated at timet. For a photopolymer, the refractiv
index change due to photopolymerization is delayed by t
t ~typically 0.0121 s relative to the illumination! @3#. Hence
E is calculated at timet2t for a photopolymer@3,4#. For
photopolymerization or a one-photon photosensitivity p
cess,p51, and for a two-photon photosensitivity proce
p52. The real coefficientA depends on the material prop
erties, the number of photons (p), and the wavelength of the
light. As no consensus has been reached on the best m
for saturation in a photosensitive material, we choose to
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Eq. ~2! because it is simple, and so can give useful analyt
results. This model has been previously used to desc
photopolymerization@3,4#.

In previous work on the planar photosensitive geome
@1,2,6#, we ignored the effects of saturation. We did th
because the typical maximum refractive index changes
quired for waveguide formation in the planar geometry a
not large. For example, consider a Gaussian beam of w
20 mm incident on a planar waveguide at the one-pho
photosensitivity wavelength of 244 nm. Numerical simu
tions indicate that a fairly uniform channel waveguide can
written with a maximum refractive index of 431027 ~at the
primary eye in the refractive index!, which is so small that
the effects of saturation can be ignored. However, for b
photosensitive materials, we find that the index grows wi
out bound before any waveguiding structure evolves. If sa
ration is included, we find that by the time a fairly uniform
channel waveguide has formed, the maximum refractive
dex is close to the saturation value. Thus saturation canno
ignored in bulk geometries.

Many of the results in this paper are based on a Gaus
beam, which is incident from the left on theinput face
(z50). For a planar material

E~y,0,t !5E0exp~2y2/a2!, ~3!

and for a bulk material

E~x,y,0,t !5E0exp@2~x21y2!/a2#, ~4!

wherea is the width of the beam, corresponding to a fu
width at half maximum~FWHM! of A2ln2a in the intensity.

III. THE MODEL IN DIMENSIONLESS FORM

Here we minimize the number of independent variab
by reducing the equations to a dimensionless form. Beca
the typical time and length scales in this problem depend
the intensity and the spatial extent of the input profile,
introduce the dimensionless transverse coordina
X5x/a, Y5y/a, wherea is the beam width, as defined i
Eqs.~3! and~4!. We also define a dimensionless field amp
tude E5E/E0. For non-Gaussian input beams,a is propor-
tional to some characteristic measure of the transverse sp
extent of the input profile, andE0 is a characteristic field
amplitude. The paraxial wave equation@Eq. ~1!# and the in-
dex evolution equation@Eq. ~2!# can be made dimensionles
using the scalings

Z5z/~k0n0a2!, ~5!

N5a2k0
2n0Dn, ~6!

T5a2k0
2n0A~E0E0* !pt, ~7!

L5a2k0n0a, ~8!

Td5a2k0
2n0AE0E0* t ~9!

Z andY are related to the dimensionless distancesz andh
used in our previous papers@1,2,6# as follows:z5k2a2Z and
h5kaY.
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Using these dimensionless quantities, Eqs.~1! and~2! are

i
]E

]Z
1

1

2
¹2E1NE1

iL

2
E50 ~10!

and

]N

]T
5~EE* !pS 12

N

Ns
D , ~11!

where in Eq.~11!, E is calculated at timeT for photosensi-
tivity, or at T2Td for photopolymerization. Now we take
¹25]2/]Y2 for the planar geometry, or¹25]2/]X2

1]2/]Y2 for the bulk geometry. The Gaussian input profi
is

E~Y,0,T!5exp~2Y2! ~12!

for the planar geometry or

E~X,Y,0,T!5exp@2~X21Y2!# ~13!

for the bulk geometry. In these new dimensionless coo
nates, the system of equations formed by Eqs.~10! and~11!
along with the initial condition@Eq. ~12! or ~13!# do not
depend ona or E0, and hence the only remaining paramete
in this dimensionless system areNs , L, andTd . This sim-
plification makes our problem much more tractable: for
Gaussian beam, or any beam that can be described by
parameters, we now only have to explore a thr
dimensional parameter space, as opposed to a
dimensional one.

IV. PRECURSORS TO WAVEGUIDE FORMATION

Using the numerical simulation described in Sec. I,
have solved Eqs.~10! and~11! using a Gaussian input bea
@1#. The major steps in the evolution of a self-written wav
guide in a photosensitive material@2# or photopolymer are as
follows. The refractive index on axis increases with time a
thus the diffraction of the beam decreases. Initially, the w
of the beam is at the input face, and so the intensity ha
trivial maximum at the origin. After some time, the refractiv
index becomes large enough to counteract the diffract
and this maximum~the primary eye! moves away from the
input face, along the propagation axis. A similar maximu
also forms in the refractive index profile. The locations
these maxima change over time. As this process contin
the waveguide beyond the eye gradually becomes more
form. Ultimately a channel waveguide is formed in the r
gion beyond the primary eye. For the one-photon photos
sitivity process and the photopolymerization process~with
reasonable physical values for the delay!, a particularly uni-
form channel waveguide is formed. For more complica
beam shapes, such as beams with multiple maxima in
transverse profile, multiple primary eyes typically form, wi
one eye corresponding to each transverse maximum.

An eye forms when the refractive index change in t
material has become sufficient to overcome the initial d
fraction of the beam, and hence the self-written refract
index structure has begun to guide light. Indeed, our num
i-
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cal simulations suggest that the eye is always a precurso
the formation of a waveguide at that transverse position
the material. Furthermore, our simulations indicate that
structure of the self-written waveguide is closely related
the trajectories of eyes within the material. Hence we c
centrate here on describing the behavior of the primary e
and use this information to make predictions about the ty
of waveguides that can be self-written using photosensitiv
or photopolymerization.

In the following discussion, although we refer to eyes
the intensity distribution, the analysis is equally valid f
eyes in the refractive index distribution. Also, in the rema
der of this section we consider only the planar geome
here. The eye is a local maximum, and so the followi
conditions must hold at the eye:

]I

]Z
50, ~14!

]I

]Y
50, ~15!

whereI 5I (Y,Z,T) is the intensity. LetT5T0 be the time at
which the eye forms. ForT,T0, the only maximum that can
exist is the trivial one atZ50, and forT.T0, there is a
maximum somewhere within the material. Hence at tim
T5T0, the following condition must be satisfied:

S ]2I

]Z]YD 2

2
]2I

]Z2

]2I

]Y2
50, ~16!

so that at the eye position, the local curvature is zero. Gi
I , Eqs. ~14!–~16! allow us to find the time and position a
which the eye forms. Equations~14! and ~15! can also be
used to find the trajectory of the eye as a function ofT.

We observe from our numerical simulations that eyes
typically located near the input face, at smallZ. Hence we
use series expansions for the intensity and the refractive
dex in the propagation distance,Z, about the input face
(Z50) to explore the behavior of the eyes. We leave
dependences on time and the transverse coordinates exa
these expansions, and use them to predict the behavior o
eyes.

In Sec. V we describe our method for calculating the
ries expansions for the intensity and the refractive index i
material that is undergoing a self-writing process.

V. SERIES EXPANSION TECHNIQUE

We assume that the refractive index is initially uniform
the plane for the planar waveguide geometry. For a b
material~Fig. 1!, we assume that the refractive index is in
tially uniform throughout the material. Hence atT50, N50,
and the loss (L), is constant and uniform throughout. Th
input beam profile is taken to be the arbitrary functionE0(Y)
for the planar case, orE0(X,Y) for the bulk case.

In calculating these series expansions, we keep the de
dences on the transverse coordinates and time exact. W
fine the normalized intensity to beI 5EE* and write

I 5 (
q50

`

I qZq. ~17!
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Substituting the expansions

E5 (
q50

`

EqZq, ~18!

N5 (
q50

`

NqZq ~19!

into the paraxial wave equation, Eq.~10!, and the index evo-
lution equation, Eq.~11!, recurrence relations can be derive
for the coefficients in these series by equating powers oZ.
Note that the coefficientsEq , I q , and Nq depend on time
and the transverse coordinates. The recurrence relations

Eq5
i

qS 1

2
¹2Eq211 (

k50

q21

NkEq212k1
iL

2
Eq21D ~20!

and ~for p51)

Nq5E
Td

T I q~T82Td!

Q~T82T!
dT8

2
1

Ns
(
k50

q21 E
Td

T Nk~T8!I q2k~T82Td!

Q~T82T!
dT8, ~21!

where Q(T)5exp(2I0
pT/Ns). The time dependences a

given exactly in Eq.~21! and the spatial dependences a
suppressed. The recurrence relation forp52 is obtained by
replacing theI r in Eq. ~21! by (s50

r I sI r 2s .
Equations~20! and~21! can be used to generate the ele

tric field amplitude and refractive index series expansions
both the photosensitivity and photopolymerization proces
The intensity series expansion is generated us
I q5(k50

q EkEq2k* . The terms in these expansions rapidly b
come quite complicated for the general case, and we use
mathematical analysis programMATHEMATICA to calculate
them.

Some of the first few terms for the photosensitivity pr
cess are in the Appendix. Further terms in these expans
have been calculated, but they become increasingly com
cated. Later we present some of the higher order terms
special cases. The first few terms for the photopolymer
tion process are discussed in Sec. VI C.

A. Investigation of eye trajectories

We find that some quite general and exact results can
obtained for the trajectory of the eyes in the intensity and
refractive index if the series expansions only contain e
powers ofZ. In this section we discuss the conditions
which the expansions have this form, and the resulting
plications for the eye trajectories.

Equation~A3! shows that the first odd term in the inte
sity expansion disappears if

Im@E0* ¹2~E0!#5LI 0 ~22!

for all values of the transverse coordinatesX and Y. The
term on the left in Eq.~22! describes the curvature of th
incident beam, and the term on the right describes how
re

-
r
s.
g
-
the

ns
li-
or
-

be
e
n

-

e

intensity drops off due to loss. For the remainder of th
section we consider the planar geometry, and so we can
Ns5`. If we write E05r (Y)exp@if(Y)#, Eq. ~22! becomes

]

]YS I 0

]f

]YD5LI 0 , ~23!

wherer 25I 0. Any physically reasonableI 0 must go to zero
as Y→6`. Hence if we integrate Eq.~23! over all Y, the
right side is a positive constant, and the left side is zero
long asf is not rapidly varying at6`. This indicates that
Eq. ~23! can only be satisfied for allY if L50, and hence
can only be satisfied if the beam has a flat phase front. He
if there is loss, or the beam does not have a flat phase fr
then the expansions must contain at least one odd term iZ.

We find that if we take the loss to be zero (L50), and the
beam phase front to be flat, then there are no odd terms in
expansions for either the planar or bulk geometries. He
for simplicity we consider a flat phase front beam in a lo
less planar geometry. For a beam with a flat phase front,E0

can be made real. ThenI 05E0
2, and

I 25
1

4
~E09

22E0E099!2T~E0
3E0923E0

2E08
2! ~24!

for the p51 photosensitivity process, whereE08 is the de-
rivative of E0 with respect toY evaluated atY0.

When there are only even terms in the expansion, Eq.~14!
is always satisfied atZ50, as there is always either a max
mum or a minimum there. Using Eqs~15!, ~16!, and~24!, it
is straightforward to show that an intensity primary e
forms at timeT0, which can be found using

4E0
3E09T05E09

22E0E099. ~25!

This is consistent with the earlier result for a Gaussian be
@1#. The right-hand side Eq.~25! is a measure of how
strongly the beam diffracts at smallZ. The presence of the
fourth derivative indicates that the initial diffraction is ver
sensitive to the beam profile, because beams that differ o
in the fourth derivative of the intensity can diffract at dr
matically different rates. This feature is independent of
index evolution. The refractive index change in the inp
face region acts like a lens on the incident beam. The l
hand side of Eq.~25! is a measure of the strength of this len
HenceT0 is the time at which the lens has grown stro
enough to counteract the initial diffraction of the beam, a
hence form an eye.

We now calculate the initial trajectory of the intensity e
after it has formed. Most primary eyes form atZ50, and we
consider only this case here. We expand the intensity se
expansion about the formation point~i.e., Z5dZ,
Y5Y01dY andT5T01dT). If we assume thatdZ,dY, and
dT are small, this expansion is of the form

I'a01a1dY21a2dTdZ21a3dYdZ21a4dZ4 ~26!

for p51, where theai are constants that depend on the be
profile. Since at the eye there must be a maximum in thY
direction, we put this expansion into Eq.~15!. This leads to

2a1dY52a3dZ2. ~27!
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Hence regardless of the input beam shape, the eye alw
initially moves away from the input face in a parabolic tr
jectory. This occurs for both one and two-photon photos
sitivity processes. The Gaussian beam is a degenerate
ample: for this case the trajectory is a straight line along
central axis@2#. In general, any eye that forms on the cent
symmetry axis of a symmetric beam moves in a straight
along this axis.

At the eye, Eq.~14! must also be satisfied, as the eye is
local maximum, and using this condition we find an equat
of the form

a2dT1a3dY12a4dZ250. ~28!

Combining Eqs.~27! and~28!, we can find the rate at which
the eye moves along its parabolic path.

The same analysis can be performed for the trajector
the refractive index eye. We find the unexpected result
to lowest order the index eye moves along the same tra
tory as the intensity eye, but at a different rate. This is t
for both one- and two-photon photosensitivity process
When loss is included, the eye trajectories can be found
ing the same technique, and we then also find that the in
sity and index eyes initially follow the same trajectory, r
gardless of the loss (L).

1. Example: second-order Hermite-Gaussian beam

As an example of the application of the series techniq
we present the analysis of the eye movement for a sec
order Hermite-Gaussian profile in a lossless planar struct
without saturation. We choose this particular example
cause it demonstrates how the structure of quite complic
self-written waveguides can be predicted using the se
technique. We consider only the one-photon process here
simplicity. The input beam is of the form

E~Y,Z50,T!5~4Y221!exp~2Y2!, ~29!

as shown in Fig. 2. This beam has maxima atY050 and
Y056A5/2 ~see Fig. 2!. For an eye to form, there must be
maximum in the transverse direction, and so in this instan
eyes form at these transverse coordinates. Using Eq.~25!, the

FIG. 2. The intensity in the transverse direction for a seco
order Hermite-Gaussian beam@see Eq.~29!#.
ys

-
ex-
e
l
e

n

of
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s-
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e
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ed
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e,

eye at Y50 forms at T51/550.2, and the eyes a
Y056A5/2 form atT5e2.5/40'0.30.

The beam is symmetric aboutY50, and so the eye tha
forms on this axis remains on axis, as for the Gaussian in
beam. The eye that forms atY05A5/2 initially moves along
the path

21Z255A5~Y2Y0!, ~30!

which is a special case of Eq.~27!, and the eye that forms a
Y052A5/2 follows the mirror image trajectory. The soli
lines in Fig. 3 show the way these eyes move just after t
form as predicted using this technique. The results of the
numerical simulation agree with these predictions for sm
Z, as shown by the dots in the inset in Fig. 3. As expected
a series expansion result, the prediction deviates from
simulation results asZ becomes larger. As described in Se
V A, we know that the refractive index eyes follow the sam
trajectory as the intensity eyes. The eyes are precursor
waveguide formation, and the eye trajectories can be use
predict the resulting structure of the self-written wavegu
~see Sec. IV!.

Hence our series expansion predicts that three wavegu
form; one corresponding to each primary eye. One wa
guide forms along the central axis of the material, cor
sponding to the eye on this axis. As the other two eyes m
apart ~at least at smallZ), we predict that the waveguide
corresponding to these eyes curve in opposite directions.
have verified this using the full numerical simulation. Figu
4 is a contour plot of the refractive index in the material a
late time in the evolution of the self-written waveguide, a
the waveguide indeed is of the form predicted by our a
lytical results.

For this example we find that we can also use the res
of the series technique to estimate the relative depths of th
waveguides. If we evaluate the intensity using the series
pansion at the eye position just after the eye has formed
find that for the outer eyes,

I ~YMAX ,ZMAX ,T!'1.3110.24 ~T20.3!2 ~31!

- FIG. 3. The initial movement of the primary intensity eyes for
second-order Hermite-Gaussian beam@see Eq.~30!#. The solid lines
are the predictions of the series technique, and the dots are re
of the full numerical simulation.
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for T.0.3, while for the central eye

I ~YMAX ,ZMAX ,T!'110.09 ~T20.2!2 ~32!

for T.0.2. Hence the outer eyes always have a higher in
sity than the eye on the central axis. This suggests that
waveguides corresponding to the outer eyes are likely to
more strongly guiding, which is supported by the contours
Fig. 4.

VI. EFFECT OF OTHER MATERIAL PARAMETERS
ON SELF-WRITING PROCESSES

As all materials exhibit some loss and saturation effe
we present here series expansion analysis of these effec
the waveguides that can be self-written in a material. T
effect of the time delay of the index response in a photopo
mer is also explored using this technique.

A. Effect of loss in a planar geometry

We consider here the effect of loss in the planar geom
for the one-photon photosensitivity process. We expect
the effect of loss on this self-writing process would be sim
lar for a bulk material. For simplicity, we again take th
input beam to be Gaussian@Eq. ~12!#. By symmetry, the eye
moves along the central axis, so it suffices to consider
expansions on theY50 axis. Even though this beam has
flat phase front, there are odd terms in the series expans
for a lossy material@see Eq.~A3!#. This is because to lowes
order, the effect of loss is to cause the intensity to drop
linearly with distance into the material. This always occu
which can be seen by noting that Eq.~A3! does not depend
on T. Hence from Eq.~A3!, if a primary eye forms in a lossy
material, it cannot form at the origin, and so must form
finite distance into the sample, atZ5Z0. We treat the loss
(L) as a small parameter in order to make this problem tr
table: we know that ifL is small, thenZ0 is also small, and
so we can ignore higher orders inZ0. If there is no loss, then
we know that the eye forms atT051 @see Eq.~25!#. Hence

FIG. 4. A contour plot of the refractive index profile, which ca
be self-written in a planar photosensitive slab using a second-o
Hermite-Gaussian beam~see Sec. V A 1!.
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we treatT21 as a small parameter also. Neglecting sm
terms, the intensity expansion becomes

I'12LZ12~T21!Z2222Z4. ~33!

Using Eqs.~14! and ~16! for an eye to form gives

4~T021!Z0288Z0
3'L ~34!

and

~T021!'66Z0
2 . ~35!

We do not need to use Eq.~15! here because we know b
symmetry that the position of the transverse intensity ma
mum is alwaysY50. Solving Eqs.~34! and ~35! simulta-
neously, the eye forms at time

T0'11
3

4
~22L2!1/3. ~36!

Hence as expected, the presence of loss increases the
taken for the intensity eye to form. The eye forms at posit

Z0'
1

2S L

22D
1/3

. ~37!

The fractional powers in Eqs.~36! and~37! show that even a
small amount of loss dramatically changes the dynamics
this process; the eye forms later, at a finite position in
slab.

WhenL50, there is always a trivial minimum at the or
gin after the eye forms. For smallL, using Eq.~14!, we find
the following equation for the position of the eye at timeT,
just after it has formed:

T2T0'22S Z223Z0
212

Z0
3

Z D . ~38!

Equation~38! shows that loss causes two stationary points
form at a finite position within the slab (Z5Z0); one is a
maximum and the other a minimum. The position of t
minimum moves towards the input face, while the positi
of the maximum moves away, as it did in the previous
sults. Hence loss causes the minimum to form at a differ
position, and change its location over time.

The leftmost dashed line in Fig. 5 shows the eye locat
as a function of time in the absence of loss. When the los
0.5 dB/cm, the movement of the maximum and/or minimu
pair is given by the other dashed line. The correspond
simulation results are given by the solid lines in Fig. 5. Fro
this figure, we see that for zero loss, the series expan
agrees very well with the full simulation results for smallZ,
as expected. When the loss is taken to be 0.5 dB/cm,
series prediction, although excellent, is not as good as
L50 ~see Fig. 5!. This is because in calculating these ser
results, we have assumed that the loss is a small param
For the realistic value of loss chosen here, the agreeme
still excellent.

For large values of loss, the minimum becomes dee
This region reduces the fraction of light guided along t

er
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central axis. If the loss is large enough, we find that t
effect prevents a channel waveguide from forming along
central axis.

We have also used the series expansion to investigate
effect of loss for the two-photon photosensitivity proce
with a Gaussian beam incident on a planar geometry, and
find the same qualitative behavior as for the one-photon p
cess. Equations~36!, ~37!, and ~38! all have the same form
for the two-photon process; the only difference is in the
efficients.

B. Effect of saturation

As explained in Sec. II, in a bulk geometry, the saturat
of the refractive index needs to be included to avoid
index growing without bound before a waveguide can
self-written in the material. Here we explore the effect
saturation on our self-writing process using a Gaussian b
incident for simplicity. We take the input profile to be of th
form in Eq. ~13!, and we assume that the material is lossl
~i.e., L50). As the material is lossless, and the input pro
has a flat phase front, there are no odd terms in the expan
~see Sec. V A!. Again, by symmetry, we know that the ey
moves along the central axis, so it suffices to consider o
the expansions on theX5Y50 axis.

The intensity series expansion up to theI 4 term is given in
the Appendix for both the one- and two-photon process
Using Eq.~A7!, the intensity primary eye forms at time

T05
1

p
exp~T0 /Ns!. ~39!

Although Eq.~39! cannot be solved exactly forT0, it can still
be used to obtain some insight. In particular, ifNs,e/p, Eq.
~39! can never be satisfied, and a primary eye can ne
form. Equation~6! shows thatNs depends on the physica
value of the saturation index (Dns), the diameter of the in-
cident beam, and the wavelength of the light. Hence i
given material, if the beam is too narrow, a self-writt

FIG. 5. The left dashed line is the series expansion predictio
the eye movement for zero loss. The right dashed line shows
positions of the maximum and minimum for 0.5dB/cm. The upp
part of this curve corresponds to the eye, and the lower part co
sponds to the minimum. The solid lines show the correspond
numerical simulation results.
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waveguide cannot form. Conversely, for a given diame
beam, ifDns is too small a waveguide cannot form. We fin
that for typical beam widths a primary eye, and hence
waveguide, forms in most materials.

Note that as in this case the primary eye forms atZ50,
the formation time can always be found, regardless of
region of validity of the series. We find that for smallNs
~i.e., Ns&5), the range ofZ over which the series expansio
results agree with the simulation decreases dramatica
This is probably because the radius of convergence of
series decreases at smallNs . Hence for smallNs , even
though we can predict whether an eye forms, the series
pansions do not provide any useful information about
behavior of the eye after it forms.

The regime whereNs is small is unlikely to be of interes
experimentally, because for typical beam diameters,
range of saturation values is substantially lower than fou
in real materials. For example,Ns55 corresponds to
Dns'131025 for a 20 mm beam diameter atl5244 nm,
significantly less than typical values of the saturation ind
@13#. Hence for realistic saturation values the series exp
sions provide useful information.

Equation~39! predicts that for both one- and two-photo
photosensitivity processesT0 increases asNs decreases from
infinity, and so it takes longer to form a waveguide wi
increasing saturation. This is shown for the one-photon c
in Fig. 6, which showsT0 as a function ofNs , as given by
Eq. ~39!.

We use the method described in Sec. IV to explore
motion of the eye. Because the eye moves along the ce
axis, and forms atZ50, Eq. ~16! and Appendix A can be
used to show that the trajectory is initially of the form

Z5Ag~T2T0!, ~40!

whereg is the rate at which the eye moves away from t
input face. For largeNs this rate is

g'
1

4 A2
S 11

1

96Ns
D ~41!
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FIG. 6. The formation time of the primary eye (T0) as a func-
tion of the refractive index saturation value (Ns) for a Gaussian
beam in a bulk photosensitive material forp51. If Ns,e, an eye
cannot form.Ns5e is indicated by the dashed vertical line.
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for p51, where the first order correction due to saturation
included. This correction is shown by the dashed line in F
7. This figure shows that the eye begins to move m
quickly as the saturation value of the index decreases f
infinity. This trend continues, as is shown by the solid line
Fig. 7, which showsg as a function ofNs for p51. If the
saturation index (Ns) is sufficiently large, then it is irrelevan
at small times, and so the value ofNs has little effect on the
dynamics; this is demonstrated by the flatness of the cu
~Fig. 7! at largeNs . For the two-photon process the rate is
the same form as Eq.~41!, with different coefficients.

C. Effect of delay on the refractive index response

As discussed in Sec. II, for the photopolymerization p
cessp51, and the refractive index response is delayed re
tive to the illumination. Previous results in this paper cor
spond to a zero delay. Here we present some results o
series expansion for the intensity for a nonzero delay.
though we have calculated the terms for an arbitrary be
we present the results for a Gaussian input beam for simp
ity. As before, by symmetry we know that the eye rema
on the central axis (X5Y50). We find thatI 051 and

I 254~T2Td!Qd24, ~42!

whereQd5exp@2(T2Td)/Ns#.
As before, an eye forms when Eqs.~14! and ~15! are

satisfied. Using Eq.~42!, this occurs when

T02Td5exp@~T02Td!/Ns#. ~43!

It is interesting to note that Eq.~43! is the same as for ou
original one-photon photosensitivity process@Eq. ~39!#, ex-
cept thatT0 is replaced byT02Td . This implies that the
time delay simply causes the eye formation time to be

FIG. 7. The solid line gives the rate at which the intensity p
mary eye moves away from the input face just after it has form
(g) @as defined in Eq.~40!# for a Gaussian beam in a bulk materi
versusNs for p51. The dashed line gives the first order appro
mation for largeNs @Eq. ~41!.
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layed byTd . We have found this property is true in gener
for an arbitrary incident beam.

The I 4 term in the series expansion is more complicat
and is not shown here. We find thatI 4 no longer depends on
just T2Td . As for the case considered in Sec. VI B, th
motion of the eye is again of the form Eq.~40!, whereg
gives the rate at which the eye initially moves away from t
input face. Figure 8 showsg as a function of the delayTd .
This figure shows that the eye moves away more slowly
the delay is increased. This is not a large effect;g changes
by less than 30% over the range ofTd values shown. Hence
to this order, this process is no longer just a delayed rep
of the processes we presented earlier. This is not surpris
as in general we would expect differences to occur for d
ferent values ofTd .

In the photopolymerization experiment conducted by K
witsch and Yariv @3,4#, a typical value for the delay is
t50.1s. Their experiment, as shown in Fig. 4 in Ref.@3#,
takes 30 s, and hence the time delay is not large when c
pared with the time scale for the self-writing process in t
case. Hence we expect that their photopolymerization exp
ments should be well described by our bulk material mod
and so the results for the photosensitive process descr
throughout this paper should apply here.

VII. GENERALIZATIONS OF THE SERIES TECHNIQUE

Although the series technique is useful for describing
behavior of the primary eyes while they remain within t
radius of convergence of the series, they typically move
of this region. The motivation for the class of techniques
describe here is to extend the validity of the series to largeZ
so that we can explore this self-writing process more fu
However, we show below that the obvious attempts to g
eralize this problem fail.

One well-known generalization is to use Pade´ approxi-
mants@11#. In particular, if the radius of convergence of
series is limited by a simple pole, then often Pade´ approxi-
mants can be used to remove the singularity, and hence
tend the region of validity of the expansion. The (N,M )
Padéapproximant is the rational function

d

FIG. 8. The rate at which the intensity primary eye moves aw
from the input face (g) for a Gaussian beam in a photopolymer
a function of the delayTd .
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f N,M~Z!5

(s50
M AsZ

s

( t50
N BtZ

t

, ~44!

where theAs and Bt are unknown coefficients, andZ is a
complex quantity@11#. The coefficients are found by settin
f N,M(Z) equal to the series in question, and equating coe
cients.

We applied this technique to our problem for a number
different (N,M ). No choice we made gave good quantitati
predictions for the behavior of the eye. This can be und
stood by considering the free propagation form of the elec
field amplitude. Assume we have a flat-phase front Gaus
beam, in the planar waveguide geometry. Then the elec
field in the slab atT50, Y50 is

E5
1

A112iZ
. ~45!

If we takeZ to be a complex quantity, then the electric fie
amplitude has a branch point atZ5 i /2 initially. This branch
point limits the region of validity of any Pade´ approximant
of the form in Eq.~44!.

One established way of coping with singularities of th
type is to use the differential Pade´ generalization@12#. In this
generalization, some differential combination ofE is ap-
proximated by an expression of the form in Eq.~44!. Here
Eq. ~45! suggests the form

1

E

]E

]Z
5

(s50
M AsZ

s

( t50
N BtZ

t

. ~46!

This form removes singularities of the type shown in E
~45! exactly. It might be hoped that it would continue to giv
an improved region of validity at later times also. Howev
we have proved that even though Eq.~46! can be used to
represent the field exactly atT50, an infinitesimal timedT
later, the field contains singularities that cannot be expres
by Eq.~46!. This explains why these Pade´ techniques canno
be used here to extend the region of validity of our ser
expansion results, and it is not clear how Eq.~46! should be
generalized to account for these singularities.

VIII. DISCUSSION AND CONCLUSIONS

We have developed an analytical technique to desc
the types of waveguides that can be self-written in photos
sitive materials and photopolymers. It should be straightf
ward to apply this approach to other self-writing process
as long as the index evolution can be described by a sim
model that can then be used to derive the necessary re
rence relations.

As discussed in Sec. II, we use Eq.~2! to model the re-
fractive index evolution because it is the simplest model t
is consistent with experiment. Equation~2! has been previ-
ously used to model the index evolution, which occurs due
photopolymerization@3,4#, and here we also apply it to pho
-

f
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tosensitivity. For photosensitivity, some experimental resu
suggest that the index evolution might be better modeled
a power law@14# but we expect that the results produced
our simpler model should remain valid, except for a scal
in the time parameter@2#.

We have shown that in a planar geometry, where the
fects of saturation can be ignored, the primary eyes in
intensity and the refractive index initially follow the sam
~parabolic! path. We have confirmed this using the full n
merical simulation, and we find that the paths remain sim
for a very long time. This result is surprising, because
refractive index at timeT depends on the entire history of th
illumination. Also, although the two eyes follow the sam
path initially, they travel along these paths at different tim
This allows us to make predictions about the resulting s
written waveguide using only the intensity series expansi
This is particularly useful, as the terms in the refractive ind
expansion take longer to calculate and are often more c
plex than the corresponding terms in the intensity exp
sions. This is because the calculation of the coefficient ofZq

in the index expansion involves the coefficient ofZq in the
intensity expansion.

As a concrete example of the use of our analytical te
nique, we investigated the waveguide that forms when
second-order Hermite Gaussian beam is incident on a l
less planar structure. We choose this beam because it h
flat phase front, and so there are no odd terms in the exp
sions, which makes the analysis easier. Also, the resul
waveguide structure is complicated, and so is a useful tes
the series technique. Looking at the behavior of the prim
eyes, we predict that three waveguides form, one along
propagation axis, the other two curve outwards. These
dictions agree with the results of our full numerical simu
tion. Without running the full simulation, which is computa
tionally intensive, this technique allows us to determine
structure of the resulting waveguide. Our results for t
beam profile suggest that the magnitude of an eye can
used to predict the relative strength of the waveguide wh
corresponds to that eye. Further work needs to be don
determine how universal this hypothesis is for other be
profiles.

We find that even if we consider flat phase-front beams
a lossless planar geometry, the primary eyes do not alw
form at the origin. For example, if our input beam is a s
perposition of two singly peaked beams, then the overl
ping tails of these beams can cause a maximum to form
largeZ. We do not consider any such cases here. Also, if
eyes form too far away from the origin, they may lie outsi
the radius of convergence of the series, and hence cann
studied with the series expansion technique.

The effect of loss on this self-writing process can also
studied using this analytical technique. We have presen
the results for a Gaussian beam in a planar structure. L
causes a minimum to form along with the primary eye. Ev
for small values of loss, we have shown that the effect of t
minimum is significant. Our analysis only considers the ca
where the loss is small. We do this for two reasons.
explained in Sec. VI A, if the loss is small, the analysis
more tractable, as we can treat the formation position a
small parameter. Also, the location at which the maximu
minimum pair forms is further inside the material for larg
loss, and so clearly if the loss is too large, they form outs
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the radius of convergence of the series, and cannot
tracked using this technique.

In a bulk material, the effect of saturation needs to
included~see Sec. II!, and we find that saturation causes t
primary eye to form later, and hence the time taken to fo
a waveguide is slightly increased. We expect this to be t
for other beam profiles also, because saturation slows d
the index change, particularly near the saturation index.
the Gaussian beam, we have shown that for very low va
of the saturation refractive index, no primary eye can for
and hence no waveguide is self-written in the material. T
occurs because the refractive index change can never be
large enough to focus in the incident beam. However,
practical values of the saturation index, we find that a p
mary eye always forms, and leads to the formation of a fa
uniform channel waveguide.

Real materials display both a nonzero loss and a fi
refractive index saturation. Although we have studied th
effects separately in this paper, we expect that the cumula
effects of these parameters can be inferred from our sepa
studies. If the loss is not too large, a waveguide still form
Values of the saturated refractive index tend to be large
both photosensitive materials (Dns50.001) @13# and photo-
polymers (Dns50.04) @3,4#, and so we expect the saturatio
to typically increase the time taken to form self-writte
waveguides slightly. Hence, as the effects of loss and s
ration of the index are often small in a real material, w
would expect the effects of saturation and loss to combin
a straightforward way. This could be tested using the se
technique presented in this paper by keeping both loss
saturation terms in the series expansions.

The region of validity of our series expansions is r
stricted by poles in the analytic continuation of the elect
field amplitude and refractive index atY50 to the complex
Z plane. If a generalization of the series technique could
found, which accounted for these singularities, then it wo
be valid for much larger values ofZ, and thus give improved
descriptions of the structure of the waveguides which can
formed.
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APPENDIX: TERMS IN THE SERIES EXPANSIONS

The recurrence relations@Eqs ~20! and ~21!# can be used
to generate the coefficients in the series expansions of
intensity and the refractive index for both the photosensi
ity and photopolymerization processes. For either the one
two-photon photosensitivity process, we find

I 05E0E0* , ~A1!

N05Ns~12Q!, ~A2!

I 15Im~E0¹2E0* !2LI 0 , ~A3!

N15Im~QTI0
p21E0¹2E0* !2pI0

pQTL, ~A4!

I 25
1

4
¹2E0¹2E0* 2

1

4
Re~E0* ¹4E0!2I 1L2

I 0L2

2

2
pQTI0

p21

2
@ I 0¹2I 01p~¹I 0!2ln~Qe!#, ~A5!

whereQ5exp(2I0
pT/Ns).

If we consider a Gaussian beam incident on a bulk lo
less material, and takeNsÞ`, the intensity series expansio
has the following terms. For either photosensitivity proce
we find

I 051 , ~A6!

I 254~pTQ21! . ~A7!

For the one-photon process, the next term in the expansio

I 45162
8QT

3 F361Ns~12Q!27TS 7

Ns
1QD1

12T2

Ns
2 G

~A8!

and for the two-photon process,

I 45161
16Q

3 S 2Ns
2~Q21!12Ns~3Q22!T

15T~4QT217!1
170T2

Ns
2

48T3

Ns
2 D . ~A9!
pe,
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